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Abstract 

Broadening of (X-ray) diffraction lines is often due to 
the distortion fields associated with lattice defects as 
dislocations. A generally applicable flexible model for 
distributions of lattice defects and their distortion fields 
is presented. The model allows a straightforward 
calculation of diffraction-line profiles. Parameters of 
the model are the average distance between the defects, 
the extent of the distortion fields and the mean-squared 
strain. The order dependence of the shape and width of 
line profiles is studied as a function of these model 
parameters. The adequacy for practical application of 
two methods frequently used to analyse X-ray diffrac- 
tion-line broadening (the Warren-Averbach analysis 
and the Williamson-Hall analysis) is investigated by 
applying them to calculating line profiles. The 'size' and 
'strain' parameters deduced by the methods mentioned 
are discussed with reference to the strain-field model 
parameters. It is concluded that only in limiting cases 
can the results be related directly to the microstructure. 
Experimental line profiles taken from a ball-milled 
tungsten powder are used to show that the line profiles 
calculated on the basis of the strain-field model pertain 
to realistic situations. It is shown that, in principle, an 
interpretation of measured line broadening is possible 
directly in terms of strain-field parameters. 

I. Introduction 

Broadening of (X-ray) diffraction-line profiles is caused 
by non-ideal optics of the instrument, wavelength 
dispersion and structural imperfectness of the specimen. 
In the generally adopted theories (e.g. Warren, 1969; 
Wilson, 1970), two kinds of structural line broadening 
are distinguished that can occur simultaneously: (i) size 
broadening, caused by a finite size of regions in the 
specimen diffracting incoherently§ with respect to each 
other; and (ii) strain broadening, due to varying 

i" Appendices written by J. G. M. van Berkum. 
Present address: Philips Research Laboratories, Prof. Holstlaan 4 

(WY-42), 5656 AA Eindhoven, The Netherlands. 
§Instead of 'independently diffracting or scattering', the expression 
'incoherently diffracting' is used throughout this paper because it has 
been used in former discussions (e.g. Warren, 1959). 

displacements of the atoms with respect to their 
reference positions. Size broadening is independent of 
the order of reflection and strain broadening is order 
dependent. 

For the application of the theories mentioned above, 
it is essential to understand when parts of a specimen 
can be considered to diffract incoherently. In general, 
the whole irradiated volume of a (polycrystalline) 
specimen can be considered as a single coherently 
diffracting unit because in reality the diffracted intensity 
is determined by the interference of all waves scattered 
in the specimen§ (even if they come from different 
crystals or grains). Thus, in principle, line broadening 
always comprises a size-broadening component reflect- 
ing the size of the specimen (even for polycrystalline 
specimens) and a (strain) broadening component 
reflecting the relative displacements of all atoms in the 
whole specimen. In many cases, the latter broadening 
component can be subdivided further. Normally, the 
specimen-size broadening is very small and it will be 
ignored here. 

For most polycrystalline specimens, the relative 
position and orientation of the grains is so variable 
and the number of grains is so large that the phase 
differences (reduced modulo2zr) between a wave 
scattered by one grain and waves scattered by other 
grains take all values between 0 and 2zr with equal 
probability. The intensity scattered by the assembly of 
grains then equals the sum of the intensities scattered by 
the grains separately, i.e. the grains diffract incoher- 
ently (e.g. Sommerfeld, 1964; Fowles, 1968). In such a 
case, the line broadening can (also) be considered to 
consist of a size-broadening component reflecting the 
size of the grains and a (strain) broadening component 
reflecting only the relative displacements of the atoms 
within the same grain. 

For many polycrystalline specimens, the grain-size 
broadening is negligible. It has been argued that owing 
to the presence of certain lattice defects even parts 
('domains') of grains can be considered to diffract 

§ The limited coherency of the incident radiation in the directions 
parallel and perpendicular to the direction of wave propagation 
[usually --~ llam and a few tens of nm, respectively, for X-rays 
(Cowley, 1981)] is ignored in this paper. 
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incoherently. This would imply that the line broadening 
can (also) be considered as the combination of a size- 
broadening component reflecting the size of the domains 
and a strain broadening component reflecting only the 
relative displacements of the atoms within the same 
domain. However, it has never been shown under which 
conditions which lattice defects can cause incoherently 
diffracting domains. This is the first problem addressed 
in the present paper (§3). 

This first problem is investigated by calculating line 
profiles on the basis of a generally applicable flexible 
model for the strain field in a deformed grain. The 
model represents the distribution of lattice defects, 
which distort the surrounding material (§2). The line 
broadening is calculated rigorously without assuming 
that parts of the grain diffract incoherently, i.e. the 
interference (phase differences) of all waves scattered in 
the grain is taken into account. From the order- 
dependence of the calculated line-profile characteristics, 
it can be concluded by hindsight if parts of the modelled 
grain could also have been considered to diffract 
incoherently; i.e. if order-independent '(domain) size' 
broadening occurs (§3). 

The second aim of this paper is to investigate the 
meaning of the 'size' and 'strain' values obtained by 
means of current line-profile decomposition methods 
(~4). These methods of line-broadening analysis use 
measured line profiles of two or more orders of 
reflection and try to decompose these into an order- 
independent size part and an order-dependent strain part 
on the basis of assumptions about the order dependence 
of strain broadening. In many applications (e.g. to cold- 
worked metals), a significant size-broadening contribu- 
tion, much larger than expected on the basis of the grain 
size, is found. Such results may be erroneous if the 
assumptions used were inappropriate for the specimen 
under study or they may be an indication of the presence 
of lattice defects with strain fields that give rise to 
almost order-independent strain broadening (interpreted 
as domain broadening, see above). This second problem 
is investigated by using line profiles calculated on the 
basis of the strain-field model (~4) and line profiles 
measured from a cold-worked specimen (§6.1). 

Since one of the line-profile decomposition meth- 
ods, the Warren-Averbach analysis, has been the 
subject of many previous discussions, a few comments 
on this method in advance may be helpful. The line- 
broadening theory developed by Warren & Averbach 
(1950) is generally accepted. Also, their analysis 
(Warren & Averbach, 1952), developed on the basis 
of this theory, to extract the 'size' and the (local) 
mean-squared strain is correct in principle. The 
analysis assumes small even moments of the strain 
distributions or approximately Gaussian strain distri- 
butions (Warren & Averbach, 1952; see also van 
Berkum, Vermeulen, Delhez, de Keijser & Mittemei- 
jer, 1994) and it requires determination of the initial 

slope of the size Fourier coefficient curve. This 
usually poses problems in practice. As a result, the 
size and strain parameters obtained from Warren- 
Averbach analyses, as presented in publications, may 
be biased to an unknown extent [see compilation of 
data in Klug & Alexander (1974) and discussion in 
van Berkum, Vermeulen, Delhez, de Keijser & 
Mittemeijer (1994)]. 

The third aim of this paper is to investigate the 
usefulness of line-profile simulation on the basis of the 
strain-field model presented in §2 for an interpretation 
of experimental line broadening (§5 and ~6) by matching 
simulation to experiment (see also van Berkum, Delhez, 
de Keijser & Mittemeijer, 1992). The line-profile 
simulation itself involves no assumptions on order- 
independent or order-dependent contributions to the line 
broadening. Therefore, if adequate strain models can be 
developed, this approach can be valuable in diffraction- 
line broadening analysis. 

2. Model 

A line profile I(20), measured as a function of the 
diffraction angle 20, corresponds to a profile l'(s, d*) in 
reciprocal space with s = [2 sin 0 / 2 ] -  d*, where 2 is 
the wavelength of the radiation used and where d* 
corresponds to the centroid of l'(s, d*). The profile 
l'(s, d*) can be expressed as a Fourier series:t 

+o¢ 
r(s,d*) = K ~ [A(L,d*)cos(2,~t~) 

L = - o o  

+ B(L, d*) sin(2zrLs)], (1) 

where K is (approximately) a constant, A and B are the 
cosine and sine Fourier coefficients and L is called the 
'correlation length', a distance in real space parallel to 
the diffraction vector H (i.e. perpendicular to the 
diffracting planes). In practice, L is considered as a 
continuous variable. Within the kinematical diffraction 
theory, the Fourier coefficients of a line profile 
broadened by lattice distortions can be written as 
(Warren, 1959, 1969): 

A(L, d*) = (cos(2~rd*ZD> 
O0 

= f pzL(Z,)cos(2~d*Z,) dZ, (2) 
- -O0 

B(L, d*) = (sin(2rrd*ZD) 
(X) 

= f pz,(ZDsin(2rrd*ZD dZL, (3) 
--(X) 

where Zt. is the elongation that a length L parallel to H 
experiences owing to the presence of lattice distor- 

t i n  textbooks (e.g. Warren,  1969), often a (fictitious) unit-cell 
dimension a3 in the direction of  the diffraction vector is chosen and the 
dimensionless quantities n = L / a  3, l = d*a3 and h 3 = (d* + s)a 3 are 
used. 
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tions, pzL(ZL) is the probability density function of Z L 
in the diffracting volume of the specimen and 
(...) denotes averaging over the whole diffracting 
volume. The factor accounting for the size broadening 
owing to the grain size is omitted in (2) and (3), i.e. 
the grain size is taken as infinite. A grain-size effect 
would obscure the effect to be investigated here (as 
mentioned in §1, line broadening is calculated by 
considering the grain as a single coherently diffracting 
unit; it can then be established afterwards if the grain 
could also have been considered as an assembly of 
domains scattering incoherently with respect to each 
other). If necessary, e.g. for a fine-grained material, 
the effect of a finite grain size can easily be included in 
the line-broadening calculation. 

A specimen usually contains many diffracting crys- 
tals, each containing many lattice defects with asso- 
ciated distortion fields. Therefore, the strains in such a 
specimen can only be described efficiently in a 
statistical way. Here, statistical formulations that are 
considered reasonable for practice are used to describe 
the strain along an axis x parallel to H (see Fig. 1) and 
to calculate the corresponding pZL(ZL). By substitution 
of Pz, (ZL) in (2) and (3), the Fourier coefficients and 
therel~y the line profile itself are obtained. If the lattice- 
defect positions and their strain-field contributions are 
determined by a stochastic process, one observes the 
same probability density pzL(ZL) along any line parallel 
to x. Then, a single infinitely long column along x is 
considered representative for all column.~ making up a 
complete three-dimensional specimen. The coordinate x 
along x is considered as a continuous variable. The 
elongation ZL(X ) of the correlation length L can be 
calculated from the strain component e= parallel to x [in 
the following, e~, is denoted as e; strain components 
other than e,= do not affect ZL(X)]: 

x+L]2 
ZL(X) = f e(x') dx'. (4) 

x-L~2 

On the axis x, a number of positions xi (i is an 
integer) occur at which contributions to the strain field 
e(x) along x are centred. These positions can be 
considered as the 'projections' of (point, line or planar) 

~H 

v X 

x~ x~., xi+ 2 x~. 3 xi. 

Fig. 1. Crystal defects with associated distortion fields projected onto 
an axis x parallel to the diffraction vector H.  The projected-defect 
distances D i = xl - x i_ t are indicated. 

lattice defects close to the axis x (see Fig. 1). The 
distances between two successive projected defects 
D i = x i - x / _ ~  are considered independent stochastic 
variables. For all variables D/, the probability density of 
D / =  D is given by a function po(D) with a mean (D). 

The meaning of the mean projected-defect distance 
(D) for a given three-dimensional spatial distribution of 
lattice defects depends on the character of the defect. In 
the case of planar defects, the axis x intersects the 
defects and the meaning of (D) is straightforward. In the 
case of linear defects (p defects per unit area) or point 
defects (c defects per unit volume), the defects that are 
relatively far from x (e.g. at distances larger than the 
average defect distance in space, p-~/2 or c -~/3, 
respectively) do not contribute to e(x) significantly 
because their strain fields are shielded by others closer 
to x. For a planar section containing x, in a region 
bounded by lines parallel to x at distances (a few times) 
p - l / 2  from x, there are about (a few times) 2 p  1/2 linear 
defects per unit length along x, so that (D) is (a few 
times smaller than) !p-1/2 for linear defects. In a 2 
cylinder around x with a radius (a few times) c -1/3, 
there are about (a few times) rrc 1/3 point defects per unit 
length along x, so that (D) is (a few times smaller than) 
(1/rr)c -1/3 for point defects. Thus, the average pro- 
jected-defect distance (D) is, according to these 
examples, smaller than the average defect distance in 
space (here, p-~/2 or c -1/3, respectively). If the spatial 
distribution of the defects is not isotropic, i.e. different 
in the directions parallel and perpendicular to H, this 
interpretation should be adapted accordingly. 

The total strain field e(x) is written as the sum of 
'component' strain fields of individual projected defects 
el(x): 

oo 

e(x)---- E ei(x)" (5)  
i = - - O 0  

Each component ei(x ) is written as the product of a 
dimensionless amplitude a~, different for each projected 
defect, and a dimensionless normalized [cf. (29)] 
'spreading' function f ( x - x  i), which is, apart from 
the location x/, taken equal for all projected defects: 

el(x) = ai f (x  - xi). (6) 

In reality, the shape and width of the component strain 
field may be different for each projected defect (e.g. 
depending on the distance from the defect to the axis x 
and/or on the orientation with respect to x). In practice, 
(6) may already provide a satisfactory description of 
measured line broadening (see g6) and then f ( x )  
represents the 'average' shape and width of the 
component strain fields. The amplitudes ai are con- 
sidered independent stochastic variables. For all ai, the 
probability density of ai = a is given by a function 
pa(a). Since the centroid of the line profile l'(s, d*) is 
taken as its origin, the average strain is nil (Wagner, 
1966), which implies (a) = O. 
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In Appendix A, it is shown how the Fourier 
coefficients A(L, d*) and B(L, d*) can be calculated 
from (2) through (6) for arbitrary functions Pa(a), Po(D) 
andf(x). In this paper, for Pa(a), pD(D) andf(x), three 
specific functions are used. 

For pa(a), a Gaussian with (a 2) as the only parameter 
is considered. Since such a p~(a) is symmetrical with 
respect to a = 0, the calculated structurally broadened 
line profiles are symmetrical [see above (26); this 
implies that the sine Fourier coefficients are nil]. The 
use of a Gaussian pa(a) does not imply that Pz (ZL) and 
the associated strain distribution are Gausslan. The 
shape OfpzL(ZL ) depends not only on the shape ofp~(a) 
but also on L and on the functions f (x)  and PD(D). 

For the projected-defect distance probability density 
po(D), a 3 function at D = (D) [see Appendix A(iii)] is 
considered in this paper, implying equidistant projected 
defects: x i -xi -1  = (D) for all i. For a non-periodic 
distribution of defects, see van Berkum et al. (1994), 
where it has also been shown that the order dependence 
of line broadening can be discussed on the basis of a 
periodic distribution of defects. Note that 'periodically 
distributed' defects do not imply a periodic strain field 
e(x) because the amplitudes a i are independent stochas- 
tic variables (cf. Fig. 2). Therefore, the range of 
meaningful Fourier coefficients in the present model is 
not necessarily limited to small L, as is the case with 
models employing periodic boundary conditions (e.g. 
Wilkens, 1979). 

If the lattice defects are screw dislocations, f (x)  is a 
Lorentzian with a width depending on the distance 
between the axis x and the dislocation line (see 
Appendix B). For edge dislocations, the tails of f (x)  
show a similar behaviour in a direction parallel to 
Burgers' vector (see Appendix B). From a comparison 
of A(L, d*) behaviours calculated using a Lorentzian 
shape and using other shapes for f (x)  [e.g. 
f (x)  c~ exp(-Ixl), which occurs on crossing a pure tilt 
boundary at right angles (Hirth & Lothe, 1982)], it 
appeared that the shape of f (x)  is not critical. In the 
following, a Lorentzian f (x)  with w as the half-width at 
half-height is used. Examples of behaviours of the strain 

~ 0 

x/  (t~ 
Fig. 2. Examples of the behaviour of the strain field e(x) for two 

different values of the relative width w~ (D) of the component strain 
fields using periodically distributed defects, a Gaussian po(a) and a 
Lorentzian f(x). 

e(x) for such cases as described in the last paragraphs 
are given in Fig. 2. 

From Appendix A, it can be readily verified that, for 
any pa(a), Po(D) and f (x) ,  Fourier coefficients can be 
expressed in terms of dimensionless quantities exclu- 
sively; this is realized here by relating the parameters to 
the average projected-defect distance (D): L r - -L/ (D) ,  
W r ~ W~ (D), x, -- x~ (D) and dr* - d* (D). This implies 
that line profiles of specimens with different (D) (all 
other things equal) have line widths proportional to 
(D) -1 and that they are identical if plotted on an 
s, = s(D) scale. 

Using periodically distributed projected defects, a 
Gaussian pa and a Lorentzian f(x) ,  the Fourier cosine 
coefficients A(L,, d~) can be written as [substitute L,, x,, 
d* and (26) into (28) and substitute xi = i(D) and L,, w, 
and x, into (34)]: 

1/2 ( 
A(L,,d*) = f dx, exp - 2n'2d'~2 2Wr(e2>/rt 

-1/2 
OO 

x ~ {arctan[(x~ - i + L,./2)/w,.] 
i=--OO 

arctan[(x, - i - L,/2)/w,]}2). (7) 

Use has been made of a simple relation between the 
mean-squared strain (e 2) and (a2): (e 2) = C(a2)/(D) 
[(32)] with C according to (29). Note that d~ and (e 2) 
occur only in the combination d~*(e2)l/2; therefore, 
using d~*(e2) 1/2 as a variable, the influence of both 
parameters is investigated at the same time. 

Thus, the strain-field model for the specific case 
expressed by (7) describes diffraction-line broadening 
on the basis of three parameters: (D), d~(e2) 1/2 and w,. 

3. Order dependence of line broadening 

In the following discussion of order dependence of line 
broadening, the parameters dealt with are the integral 
breadth and the Fourier coefficients of the line profiles, 
since these parameters are used in traditional methods 
of line-profile analysis. 

The behaviour of the cosine Fourier coefficients 
A(L,,d~) calculated using (7) is investigated as a 
function of the relative length of the diffraction vector 
d~ = d* (D) (i.e. order of reflection). Since the profiles 
l'(s,, d~) are symmetrical with respect to s, = 0 [see 
second paragraph below (6)], their integral breadths 
#,(d;) = f r ( s , ,dDds , / l ' (O ,  dD [note that ~ r - -  = fl(D), 
where f l =  f l '(s,d*)ds/l '(O,d*)] are calculated here 
from the cosine Fourier coefficients according to 

flr(d~) -- A(Lr, d~)dL (8) 

The behaviour of #,(d~) as a function of dr* (e 2) 1/2 and 
w, is shown in Fig. 3. As expected, fl~(d~) increases 
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with increasing d~(e2) 1/2 . T h e  magnitude and rate of 
increase strongly depend on the relative width w~ of the 
strain fields of the individual defects. In the following, 
two extreme cases (infinitely broad and infinitely 
narrow component strain fields; see §3.1 and §3.2, 
respectively) are discussed; then, intermediate cases are 
considered (see §3.3). 

3.1. Infinitely broad component strain fields 

For Wr ~ 00, the breadth increases linearly with 
d~ (e2) 1/2 (see Appendix C and Fig. 3a): 

flr(d~r ) _ (2:rr)l/2d~ r (~)1/2. (9) 

This behaviour is well known for the strain broadening 
from specimens with a uniform lattice spacing d within 
each grain and a Gaussian spacing distribution over the 
grains, where (e 2) = ( ( d 2 ) - ( d ) 2 ) / ( d )  2 (Stokes & 
Wilson, 1944). Note that (9) or its equivalent on a 20 
scale [/5 = 2(2a,)1/2(e2) 1/2 tan0] has often been used for 
strain broadening in general. 

The Fourier coefficients for w, --+ oo are given by 
(38). They are perfectly Gaussian and strongly order 
dependent: ln[A(L,, d*, ) = -(2zr2 (e2) ) L2d~2. The line 
shape of l'(s,) is also Gaussian. The shape, width and 
order dependence of l'(s,) are independent of the shape 
of pn(D), p,(a) and f (x )  (see Appendix C). An 
interpretation of part of the broadening considered 
here as order independent is out of order. 

4 ' 0.3 - 

3 

~:  0.1 
2 

o ~ 1  . . . . . . . . . . . . . . . . . . . . . . . . . .  O.Ol 

¢£ 

0.0 0.5 1.0 1.5 2.0 

(a) 

1 F -  1 1 ] Y ~  
Wr ,I, 0 

0 l I I . . _ . _ _ . . J ~  
0.0 0.5 1.0 1.5 2.0 

(b) 

Fig. 3. Relative integral breadth/5 r of line profiles in reciprocal space 
(a) as a function of d~(e2) l/'z for different relative widths w, of the 
component strain fields and (b) as a function of d*(~) I/2 
(with (~) = m4,,(e2)) for infinitely narrow component strain fields 
[w, ~ O; (e 2) --* oo; see text below equation (10)] (dashed lines are 
asymptotes for w, - ,  e¢ and w, ¢0). 

3.2. Infinitely narrow component strain fields 

In the limit w r ~. 0, the relative integral breadth 
/~r(dr*) reads [see (44) and Fig. 3(b)] 

3~(d;) = [1 - exp(-2zr2d*2(r/2))] 

x [1 + exp(-2~d;2(r/2))], (10) 

where the dimensionless parameter (172) = ~w,(e 2) is 
used to characterize the strain content of infinitely 
narrow component strain fields (see Appendix D), 
recognizing that, in the limit w~ $ 0, (e 2) is an 
inconvenient parameter to measure the lattice distor- 
tions because there is only line broadening if (e 2) is 
infinite (cf. Fig. 3a). 

For small d,* (r/2) ~/2, it follows that/5 0¢ d .2 . This case 
is related to the broadening observed from 'paracrystal- 
line' materials (see discussion at the end of Appendix 
D). For larger d,*(r/2) ~/2, 3r(dr*) approaches asymptoti- 
cally to 1 [see (10) and Fig. 3]. For d,*(r/2) 1/2 > 1/2, an 
increase of (172) (strain content) or dr* (order of 
reflection) does not lead to an increase of the line 
breadth. 

The Fourier coefficients and the corresponding line 
profile for dr*(r/2) 1/2> _ 1/2 approach [cf. (43) with 
E = 0 ]  

A(L .d*)  = 1 - L r  forL r < 1; zero otherwise (11) 

~t(Sr) (X sin2(rtSr)/~. (12) 

Thus, the line broadening becomes completely 
independent of (r/2) 1/2 and dr*. Apparently, the line 
broadening from defects with larger strains confined 
to distances very much smaller than the average 
projected-defect distance is order independent. This 
type of strain broadening can be conceived as pure 
'size broadening': small but undistorted crystals (here 
of size (D)) induce exactly the s a m e  l'(Sr) as the 
strained infinitely large crystal considered here (e.g. 
Delhez, de Keijser & Mittemeijer, 1982). If the 
defects are not periodically distributed, A(L r, d~) and 
I'(Sr) have more smoothly decaying tails but the same 
conclusions hold for the order dependence and the 
correspondence with pure size broadening (van 
Berkum et al., 1996). 

The model structure producing this type of broad- 
ening consists of blocks of undistorted material 
('domains') shifted with respect to each other over 
distances (D)oi [see (40)]. The phase differences 
corresponding with these shifts are 27rdr* 0i (modulo 2n'). 
F o r  d~ ( / ]2)1/2> 1/2, these reduced phase differences 
are almost uniformly distributed over the reduced range 
of 2Jr in phase space. Thus, incoherency of diffraction 
can be understood for s u c h  dr*(t]2) 1/2 values (see §1). A 
practical example of such a structure is a specimen with 
small-angle boundaries with relatively high dislocation 
densities in the boundaries, in which the lattice 
distortion due to the dislocations in the boundaries is 
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large but confined to narrow regions adjacent to the 
boundaries [see results for large D i d  of Wilkens 
(1979)]. 

3.3. Component strain fields with intermediate widths 

For intermediate w,, the dependence /~r(d~) on 
d,*(e2) 1/2 is complex (see Fig. 3a). For not too small 
d~(e2) 1/2, /~r(d~) can be described by a straight line 
with, if extrapolated, a positive intercept of the 
ordinate. With increasing w,, the slope increases from 
0 to (27r) 1/2, whereas the intercept decreases from 1 
to 0. For w, >_ 1, the behaviour is almost as for 
w r - ,  c~. For w, _< 0.01, /~,(d~), at the larger values 
of d~*(e2) V2, behaves almost as in the limit wr ,1, 0 (cf. 
Fig. 3b). 

The behaviour of the Fourier coefficients for three 
intermediate w r values is shown in Fig. 4. The shapes of 
the curves change from Gaussian for large w~ (Fig. 4a) 
to more or less straight lines for small w, (Fig. 4c). The 
tails of the corresponding line profiles become more 
pronounced with decreasing w,. Here, always a 
horizontal tangent in L~ = 0 is observed because the 
calculations pertain to an infinitely long column (see 
Fig. 4d; Warren, 1969). For such a case, the curvature 
d2A/dL 2 in L = 0 is proportional to d .2 (e 2) (Eastabrook 
& Wilson, 1952). Since d~2(e2), which is proportional 
to the first term in the Taylor-series expansion for 
A(L r, d*), is the same for all sets of Fourier coefficients 
shown in Fig. 4(d), the initial curvature is independent 
of wr. The next term in the expansion of A(Lr, d~) is of 
opposite sign and is proportional to L 4, (e 4) and the 
mean squared strain derivative (e '2) (van Berkum et al., 
1994). Since e(x) takes more extreme values and steeper 

'~ w , t / ~  wr = 0.3 

f (2) , ~ ) , ~  (1) 
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L ,  
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0 I i i , ~  , ~  

0 L ,  
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1 . 0  , , , 

0 . 0  Lr O. 1 
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Fig. 4. Fourier coefficients of broadened line profiles calculated for 
three intermediate values (indicated) of the relative width w r of the 

, 1 / 2  component strain fields: (a)-(c) using d; (e 2) = 1 [first order (1); 
upper line] a n d  dr*(e2) I/2 = 2 [second order (2); lower line]; (d) 
behaviour at small L r for first order (d,*(e2) 1/2 = 1; dashed line is 
asymptote for w r ---> c~). 

peaks for decreasing w, (see Fig. 2), both (e 4) and (e/E) 
increase with decreasing w r (see also Appendix E). 
Consequently, the smaller w,, the smaller the L r value 
of the infiexion point of A(L,, d~). 

The shapes of a first and a second order of reflection 
are markedly different (see Figs. 4a-c):  in general, the 
tails of A(L,., d*) for the higher order of reflection are 
more pronounced in a relative sense [e.g. relative to the 
width at A(L,., d~) = 0.5]. The tails of the corresponding 
line profiles are also more pronounced for the higher 
order of reflection. The differences in line width 
between a first and a second order of reflection are 
influence strongly by Wr. In general, the difference 
diminishes with decreasing wr (see Figs. 4a-c).  Since 
order dependence of line broadening can be related to 
incoherency of diffraction, this observation can be 
interpreted as a gradual loss of coherency of the 
diffraction with decreasing w r. In the limit w r .1. O, 
incoherent diffraction by the blocks of undistorted 
material between the defects ( 'domains ')  is obtained, as 
discussed in §3.2. 

The above conclusions pertaining to intermediate wr 
values are most relevant for practice (cf. ~6.2). 

4. Line-profile decomposition (size-strain 
separation) applied to simulated line profiles 

Methods of analysis based on line-profile decom- 
position conceive the line profile F(s,d*) as the 
convolution of an order-independent size-broadened 
profile FS(s) and an order-dependent strain-broa- 
dened profile l '°(s ,d*).  Usually, the characteristics 
of two (or more) line profiles l'(s, d*) with different 
values for the length d* of the diffraction vector are 
used to estimate size and strain parameters that are 
intended to characterize the microstructure of the 
specimen. 

In the following, line profiles calculated using (7) are 
analysed, in terms of size and strain parameters, as if 
they were real measurements, by means of the William- 
son-Hall and the Warren-Averbach analyses. 

4.1. Williamson-Hall analysis 

4.1.1. Procedure. A number of methods use the 
integral breadths/~(d*) (i. e. areas divided by heights) of 
line profiles l'(s, d*) to estimate the integral breadths fls 
of l'S(s) and ~°(d*) of I'D(s, d*) (for an overview, see 
Klug & Alexander, 1974). All these methods assume 
that fl°(d*) oc d* [e.g. ff~(d*) = (2rr)I/2 e d*, where e is a 
strain parameter; cf. (9) and its discussion] and that 
l'S(s) and l '°(s, d*) have specific shapes. These assump- 
tions make them liable to systematic errors. Never- 
theless, the methods are applied frequently and 
therefore one of them, the classical linear version of 
the Williamson-Hall plot, is investigated here. 
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In the linear version of the Williamson-Hall analysis 
(Williamson & Hall, 1953),I" it is assumed that fls and 
/iV(d*) are linearly additive. Further, /i s is identified 
with (DwH) -] and /i°(d*) is identified with 
(27r)l/2ewHd*, where DWH and eWH are a size and a 
strain parameter, respectively. Therefore, a straight line 
is drawn through the data points in a plot of/i(d*) versus 
d* and the intercept of the ordinate is interpreted as 
(DwH) -1 and the slope is interpreted as (2a')r/2ewH. If 
more than two orders of reflection are available and 
they do not lie on a straight line, the analysis should not 
be applied. 

According to the present model, the behaviour of 
/ir(dr*) as a function of d*(e2) 1/2 is always more or less S 
shaped (see Fig. 3a). Consequently, the Williamson- 
Hall analysis should in fact not be applied. If the 
Williamson-Hall analysis is applied nevertheless, the 
slope and the intercept can take many different values 
dependent on the set of d* employed (even negative 
intercepts are possible). 

Onl~¢ for relatively large dr* (e 2 ) 1/2, say 
dr*(e2) '/2 _> 1/(10wr) / , /ir(dr*) follows a straight line 
(see Fig. 3a) and a Williamson-Hall analysis may be 
meaningful. To investigate the meaning of the param- 
eters DWH and eWH in this case, /ir(dr*) of a first and 
a second order of reflection have been calculated 
using dr*(e2) 1/2 = 1/(lOw~) 1/2 for the first order (e.g. 
d * = 5 n m  -1, ( D ) = 4 0 n m ,  w = 4 n m  and (e2)= 
25 x 10 -6, which appear reasonable values for cold- 
worked metals). From these/i,(d*) values, the size and 
strain parameters DwI. I and ewH have been deduced by 
means of the Williamson-Hall analysis. Since DWH and 
ewn refer to the size and the strain within independently 
diffracting 'domains' in the specimen and the line 
broadening is calculated from the strain field in an 
infinitely long coherently diffracting column, it is not 
self-evident what values of Dwn and ewn should be 
expected. Rather arbitrarily, DwH is compared with the 
average projected-defect distance (D) and ewH with the 
root-mean-squared strain (e 2) 1/2. 

4.1.2. Results and discussion. The results obtained 
by means of the Williamson-Hall analysis as a function 
of w, are shown in Fig. 5(a). 

For very large w r, all broadening is attributed to 
strain (i .e. / is  = 0 and Dwr ~ = c~), because/it(dr*) cx dr* 
[see (9)]. The strain parameter ewn equals (e2) 1/2. 
Thus, according to the Williamson-Hall analysis, a 
smoothly varying strain field induces pure strain 
broadening. 

For w r $ O, the Williamson-Hall analysis attributes 
all broadening to size (i.e. /io = 0 and ewH = 0) and 
Dwn equals (D). This is understandable too, since 

, 1/2 1/2 d~ (~)  = 1/(lOWr) becomes very large for Wr ~, 0, 

~" On a 20 scale, instead of on an s scale, the Williamson-Hall analysis 
involves a plot of #cos0  v e r s u s  sin 0. Then, the intercept of the 
ordinate is interpreted as 2/Dw~ and the slope is interpreted as 
2(2~r)l/2ewr I. 

in which case/5, approaches 1 and becomes independent 
of the order of reflection [see Fig. 3(b) for large 
(r/2)1/2]. Therefore, the line through the two calculated 
data points has zero slope and an intercept of the 
ordinate/ir = 1. Thus, in the Williamson-Hall analysis, 
the broadening due to a sharply peaked strain field is 
interpreted as pure size broadening, with a size 
parameter DWH equal to the average projected-defect 
distance. 

For intermediate w r, the Williamson-Hall analysis 
attributes the calculated line broadening partly to size 
and partly to strain (see Fig. 5a). The size parameter 
Dwn is always larger than (D); the strain parameter ewH 
is always smaller than (e 2) 1/2. The deviations appear to 
be correlated: with increasing Wr the decrease of 
(D)/DwH approximately equals the increase of 
ewH/(e2) 1/2. However, the relation between the result- 
ing values for DWH and eWH and the simulated strain 
field is unclear. In practice, without additional informa- 
tion on the nature of the strain field in the specimen, 

l r l w I i |l| | w w | l w | l 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

O.Ol o.1 

Wr 
(a) 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ewA 

0 . 0 1  0 . 1  1 

w,. 
(b) 

Fig. 5. Results of (a) the Williamson-Hall analysis and (b) the 
Warren-Averbach analysis as a function of the relative width w, of 
the component strain fields. The analyses are applied to a first- and a 
second-order line profile, calculated using d* (e 2) 1/2 = 1/(10w r )1/2 
for the first order. The size parameters DwH and DwA are compared 
with the average projected-defect distance (D). The strain 
parameters ewH and ewA are compared with the root mean squared 

1/2 strain (e 2) 1/2 and, in the case of ewA, also with the true (~,) at a 
relative correlation length L, = 1/2 (for the definitions of the size 
and strain parameters, see text). 
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DwH can be anywhere between (D) and oo and ewH 
between 0 a n d  (e2) 1/2 The inappropriateness of 
Williamson-Hall analyses derives from assumptions 
regarding the integral breadths and shapes of the size- 
and strain-broadened profiles that do not hold in 
general. 

4.2. Warren-Averbach analysis 

4.2.1. Procedure. Several methods for line-profile 
decomposition use the Fourier coefficients A(L, d*) of 
two (or more) line profiles l'(s,d*) to estimate, 
implicitly or explicitly, the Fourier coefficients AS(L) 
of l'S(s) and A°(L,d *) of l'°(s,d *) [note that 
AS(L)A°(L, d*) = A(L, d*)]. Since a set of Fourier 
coefficients represents a line profile in all its details, 
such Fourier methods can yield more detailed informa- 
tion on the microstructure than methods based on 
breadth parameters. A frequently applied Fourier 
method is the so-called Warren-Averbach analysis 
(Warren & Averbach, 1950, 1952). 

In the Warren-Averbach analysis, it is assumed that 
ln[A°(L,d*)]--27r2L2d*2(~L) and consequently that 
ln[A(L,d*)]=ln[AS(L)]-2rrELEd*2(~), where (~) is 
the variance of e L, the strain e averaged over a length L 
(see also Appendix E).t  Therefore, a straight line is 
drawn through the data points in a plot of ln[A(L, d*)] 
v e r s u s  d .2 and the intercept of the ordinate is interpreted 
as In[AS(L)] and the slope is interpreted as 
--27rELE(e2L)WA (the subscript WA is added to (eEL) to 
distinguish the values obtained by means of the Warren- 
Averbach analysis from the true values). If L, d* and the 
strains e(x) are sufficiently small, the assumption used 
in the Warren-Averbach analysis is valid and the 
relation ln[A(L, d*)] v e r s u s  d .2 is linear. To determine if 
practical L, d* and e(x) values are small enough, the 
linearity of the relation is investigated below for Fourier 
coefficients calculated using (7). From AS(L) and (~)wg 
for many L values, a size parameter 
DwA=,limL,0,[dAS/dL] - 1 . ~ , , / ~  and a strain parameter 
ewA -- ~lmL$0 ~)WA can be calculated in principle. In 
practice, both limits for L $ 0 cannot be determined 
reliably and one proceeds otherwise. To obtain a value 
of DWA, usually a straight line is fitted to AS(L) in the L 
region where it has a reasonably straight portion and 
DWA is taken as the L value at the intersection of the 
fitted line and the L axis. For a value of ewA, the value 

/,)2\1/2 of \"L/WA at L- -DwA/2  can be chosen (Klug & 
Alexander, 1974). 

Next, regardless of the linearity, the Warren- 
Averbach analysis is applied here to Fourier coefficients 
of first- and second-order line profiles, calculated using 
the same wr and de(e2) 1/2 as in ~4.1. This size-strain 

~'The Warren-Averbach analysis can also be performed without 
taking the logarithm (Delhez & Mittemeijer, 1976). Advantages and 
drawbacks of both versions have been discussed by van Berkum et al. 
(1994). 

separation yields AS(L) and (~)WA- Although the results 
of different practical procedures to calculate DWA and 
ewA (see above) deviate, in particular for DWA, it was 
found that the trend and limiting cases discussed below 
are always the same. Here, for Dwg, a straight line is 
fitted to AS(Lr) for 1/3 < Lr < 2/3 [this is the 
straightest part of AS(L~) for all w~]; for ewA, the 

/,)2 \1/2 value of X'-L,/WA at L ~ -  1/2 is taken. For the same 
reason as for DWH and ewn (see ~4.1), it is not self- 
evident what values of DWA and ewA should be 
expected. As in ~4.1, the estimate DWA is compared 
with (D). For ewA, the true (~,)1/2 at L~ = 1/2 is used 
as reference. 

4.2.2. Results and discussion. For practical values 
of Lr, d~' and (e2) 1/2, the linearity of the relation 
ln[A(L~, dT) versus d;  2 strongly depends on the relative 
width w~ of the component strain fields (see Fig. 6). 
The true lines in Fig. 6 start in A(L, dr*)= 1 for 
dr*2(e 2) = 0. Hence, for all values of L~, a Warren- 
Averbach analysis for infinitely small d~*2(e 2) yields 
AS(Lr) = 1 and DWA = O~, corresponding with the 
infinite column length considered here. For all L r, the 
initial slope also yields exactly the true ( ~ ) .  However, 
due to the curvature of the true lines (explained briefly 
in Appendix E), straight lines through data points for 
practical d~*E(e 2) can yield intercepts deviating from 
zero and slopes deviating from (~,) (see Figs. 6b and 
c). 

For very large w~ (>_ 1), the true line remains straight 
up to large d~*E(e 2) and the straight line fitted in the 
Warren-Averbach analysis coincides with the true line 
(see Fig. 6a). Then the 'true' values are obtained (see 
Fig. 5b): DWA = O(9 and eWA = (4r) 1/2 at L~ -- 1/2, 
which is almost equal to (e2) 1/2 in this case (cf. Fig. 11). 
Apparently, a smoothly varying strain e(x) does not 
break up the column in 'domains'. The line broadening 
is interpreted as pure strain broadening. 

For very small w r (< 0.01), the true line is strongly 
curved at very small d*E(e 2) and almost straight in the 
range where experimental data points are usually 
situated (see Fig. 6c). Since a straight line through the 
two data points coincides with a large portion of the true 
line, it appears a meaningful description of the 
behaviour of the Fourier coefficients, in spite of the 
deviation at very small d~E(e2). In §3 it was found that, 
for the case w~ ~, 0, the relatively little distorted regions 
between the 'walls of distortion' near the projected 
defects can be considered to scatter incoherently with 
respect to each other. This complies with the almost 
horizontal true line (see Fig. 6c): nearly pure size and 
little strain broadening. For wr $ 0, the size parameter 
DWA tends to (D) and the strain parameter vanishes (see 
Fig. 5b). 

For intermediate w r values (-~ 0.1), the true line does 
not have straight parts (see Fig. 6b). The straight line 
through the data points deviates from the true line in an 
arbitrary way. Different results would be obtained from 
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different pairs of  reflections (cf. Wilkens, 1979). 
Knowing the true line, one would not apply the 
Warren-Averbach analysis in such a case. If, however, 
as usual in practice, only two data points ( i .e .  two 
orders of  reflection) are available and the curvature of 
the true line is unknown, the results of  the Warren-  
Averbach analysis deviate from the ' true'  values in an 
unknown way. 

An example of the results of the Warren-Averbach 
analysis for intermediate Wr in terms of A S ( L , )  and  
(~,)WA is shown in Fig. 7. The mean squared strains 
(~,)WA are much smaller than the true (~ , ) ,  except in 
the limit L r ,1, O. T h e  resulting behaviour of AS(Lr)  is a 
problem in itself. It is curved downward for small L,., 
which is in contradiction with the theoretical basis of the 
Warren-Averbach analysis. Truncation of the line 
profiles can cause such a 'hook effect' (Young, Gerdes 
& Wilson, 1967) but this effect is absent in the present 
calculations. Here, the hook effect is exclusively due to 
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Fig. 6. Behaviour of In[A(L,, dr*)] as a function of dr .2 (e 2) for a relative 
correlation length L r = 1/2 and three relative widths w, of the 
component strain fields: (a) w r = 1, (b) w, = 0.1 and (c) w, = 0.01. 
The dots represent Fourier coefficients of a first and a second order 
of reflection with d* (e2) 1/2 = 1/(10 w,.) 1/2 for the first order. In the 
Warren-Averbach analysis, the intercept of the ordinate and the 
slope of the dashed line are used to calculate size and strain 
parameters (for w r = 1, the dashed line coincides with the full line). 

the violation of the assumption underlying the Warren-  
Averbach analysis. In the calculation of a size 
parameter DWA, the theoretically correct method 
(using lim~,0[dAS/dL]) yields DwA = oo, which com- 
plies with the infinitely long column used in the 
calculations. In practice, however, a straight-line fit to 
some part of  AS(Lr)  is used, which yields D W A / ( D  ) 
values ranging from 0.6 to 1.2. Further, it follows from 
Fig. 5(b) that DWA and eWA depend strongly on w r. As 
in the case of the Wil l iamson-Hal l  analysis, it is 
concluded that, for intermediate w , ,  the relation 
between the values determined for size-strain param- 
eters, DWA and eWA, and the strain-field parameters is 
unclear. The inappropriateness of Warren-Averbach 
analyses derives from assumptions regarding the Four- 
ier coefficients of the strain-broadened line profile that 
do not hold in general and from the arbitrariness of the 
estimate for DWA. 

5. Line-profile matching using the strain-field model 

The observed limits of the fields of application of 
classical size-strain separation methods show the 
necessity for an alternative method for the analysis of 
line broadening from distorted specimens. Simulation 
and matching of line profiles on the basis of a strain- 
field model constitutes such a method. The model 
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Fig. 7. Results of the Warren-Averbach analysis applied to Fourier 
coefficients A(L,, d*) and A(L,, 2d*) of a first- and a second-order 
line profile, respectively, calculated using w, = O.1 and 
dr*(e2) 1/2 = 1 [= 1~(lOw,) 1/2] for the first order, in terms of (a) 
size coefficients AS(L,) [A(L,, d*) and A(L,, 2d*) have been included 
for comparison] and (b) relative mean squared strains <~)wA/(e 2) 
[the true (~)/(e 2) have been included for comparison]. 
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parameters can be adapted and refined until certain 
characteristics of the simulated line profile fit certain 
characteristics of the measured one. The effect of 
instrumental line broadening, always present in mea- 
sured line profiles, should either be removed from the 
measured line profile or added to the simulated line 
profile (see e.g.  van Berkum et a l . ,  1992). If the fit 
succeeds, the model and the model parameters can 
provide a physically meaningful description of the strain 
field in the specimen. 

The strain-field model presented in §2 can be used in a 
line-profile simulation and matching method. For this 
model, a single line-profile parameter, like the integral 
breadth/3(d*), is usually not sufficient to determine the 
three model parameters (D), (e2) 1/2 and w r. Fitting the 
full experimental line profile l ' ( s )  on the basis of (1) and 
(7) is laborious because each step in an iterative 
procedure involves a Fourier transformation. There- 
fore, fitting the Fourier coefficients A(L,  d*) is advanta- 
geous. Equation (7) assumes, among other things, 
periodically distributed projected defects. For small 
and moderate L r, the Fourier coefficients are not much 
affected by the distribution of projected defects along 
the column, but for large L r they are (van Berkum et al . ,  
1996). Therefore, the fitting should be restricted to, 
say, L r < 1 or a more general version of the strain-field 
model should be used. 

If the average grain size (T) of the specimen is so 
small that it contributes to the observed line broadening, 
a factor 1 - L / ( T )  (with (T) as a fixed or an adjustable 
parameter) can be added to the description of the 
Fourier coefficients to account for the grain-size 
broadening (only for L << (T)). 

The reliability of the results is very much enhanced if 
more than one line profile can be fitted simultaneously. 
In general, only orders of the same reflection can be 
used because the strain field may be systematically 
different in different crystallographic directions in the 
diffracting crystals. In the case of isotropic lattice 
distortion, all reflections of a deformed specimen can be 
used to determine a single set of model parameters (see 
e.g.  §6). 

In the next section, line-profile simulation and 
matching as a method of analysis (fitting Fourier 
coefficients calculated from a strain-field model to 
experimental ones) is investigated by applying the 
method to experimental line profiles. 

6. Line-profile decomposition and line-profile 
matching applied to experimental line profiles 

First, the acquisition and processing of the experimental 
data are described. 

To obtain a sample of a cold-worked metal, a 
tungsten powder (> 99.5 wt%, Fluka Chemika) was 
ball-milled for 1 h using two balls in a horizontally 
moving vessel. Tungsten was chosen because of its 

elastic isotropy. Ball milling was used because it is a 
many-sided ('isotropic') deformation procedure that is 
expected to produce dislocations with all possible 
combinations of Burgers' and line vectors. For these 
two reasons, the strain field in the specimen can be 
considered equivalent in all crystallographic directions 
and a simultaneous analysis of all measurable reflections 
is possible. Thus, the dependence of the integral breadth 
and the Fourier coefficients on the length of the 
diffraction vector can be studied with much more detail 
than in the case of an anisotropic material or an 
'anisotropic' deformation procedure (using CuKct 
radiation, eight reflections can be analysed for 
tungsten). 

If the broadening effect of dislocations is to be 
investigated separately, other origins of line broadening 
should preferably be absent. The ball milling of 
tungsten produced some small particle fragments (see 
Fig. 8a), which would give rise to additional line 
broadening due to their finite sizes. These fragments 
were removed by a sedimentation procedure using 2- 
propanol. The average particle size after this treatment 
is definitely larger than 1 ~tm (see Fig. 8b). The line 
broadening due to such an average particle size is a 
negligible fraction of the total broadening. 

A diffractometer specimen was prepared by sus- 
pending a small amount of the fractionated powder 
once more in 2-propanol and now sedimenting it onto 
a flat Si(510) single-crystal substrate. A silicon 
standard specimen, prepared according to van Berkum, 
Sprong, de Keijser, Delhez & Sonneveld (1995), was 
used to measure the instrumental broadening. Evi- 
dently, owing to the large difference in the absorption 
coefficients, silicon is an unsuitable standard material 
for a tungsten specimen in general. However, the 
transparency broadening by the Si standard specimen 
is decreased to a negligible level by using an Si layer 
thickness of ca 10~tm (Berkum et al . ,  1995). There- 
fore, the Si standard specimen yields the correct 

(a) (b) 

Fig. 8. Scanning-electron-microscope observations of a ball-milled 
tungsten powder (a) before and (b) after removal of the smallest 
particles by means of sedimentation. 
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instrumental broadening for a practically non-transpar- 
ent material like tungsten. 

The X-ray diffraction-line profiles were recorded on 
a Siemens D500 diffractometer using Cu Kot radiation 
and a graphite diffracted-beam monochromator. The 
divergence of the incident beam was 1 ° and the 
receiving-slit width was 0.05°20. The specimens were 
rotated around the normal to their surfaces during the 
measurements. For the tungsten specimen, the complete 
20 range (27 to 167 ° ) was measured; for the silicon 
standard specimen, a sufficiently long range around 
each peak. For all profiles, linear backgrounds were 
subtracted and the C u K a  2 components were removed 
according to Delhez & Mittemeijer (1975). The profiles 
were then translated to intensity distributions l'(s, d*) in 
reciprocal space (with d* corresponding to the centroid 
of I') and Fourier transformed. To obtain Fourier 
coefficients of the instrumental line profile for the d* of 
the tungsten reflections, Fourier coefficients of the two 
nearest silicon reflections were interpolated linearly. 
Finally, the Fourier coefficients of the tungsten profiles 
were divided by those of the instrumental profiles to 
obtain the Fourier coefficients of the structurally 
broadened line profiles (Stokes, 1948). 

The resulting sine coefficients were small for all 
reflections [--, 0.07A (L = 0) at most], indicating almost 
symmetrical line profiles. The integral breadths 15 can 
then be calculated from the Fourier coefficients using 
(8), Here, the range of integration (summation) was 
gradually increased and 15 was taken as the plateau value 
reached in a plot of the integral versus the range of 
integration. In this way,/5 of the structurally broadened 
line profiles was obtained without adopting a specific 
shape function. 

6.1. Line-profile decomposition using size and strain 
parameters 

The integral breadths of the eight reflections of the 
ball-milled tungsten powder plotted versus d* lie 
reasonably on a straight line having a positive intercept 
with the ordinate (see Fig. 9a). The last two reflections 
show minor deviations from this line, which may be due 
to truncation effects (the 321 and 400 reflections 
probably have a little overlap and the 400 reflection is 
cut at 20 = 167°). Exclusion of the last or last two 
reflections from the analysis does not alter the 
conclusions reached. Earlier measurements of integral 
breadths from tungsten filings yielded results very 
similar to Fig. 9(a) (Williamson & Hall, 1953; 
Langford, 1992). The size and strain parameters 
determined from Fig. 9(a) by means of the linear 
version of the Williamson-Hall analysis (see ~4.1) are 
O w n  ~ 62nm and ewH = 2.5 × 10 -3 ,  i.e. the broad- 
ening is interpreted as partly due to size, partly due to 
strain, corresponding to an intermediate w r value. 
Hence, according to ~4.1, the Williamson-Hall size 

and strain parameters cannot be linked easily with the 
microstructure of the ball-milled powder. 

The cosine Fourier coefficients of the experimental 
structurally broadened line profiles plotted logarithmi- 
cally as a function of d .2 do not lie on a straight line (see 
Fig. 9b). A similar curvature can be observed in other 
recently published data obtained from ball-milled 
tungsten (Wagner, Yang & Boldrick, 1992). On the 
other hand, such curvature was not found by McKeehan 
& Warren (1953) and Aqua & Wagner (1964). The 
absence of such a curvature may be due to insufficient 
annealing of the standard specimen they used (see 
Williamson & Smallman, 1956). According to ~4.2, 
when a Warren-Averbach analysis is applied to pairs of 
points (on the curved 'lines' of Fig. 9b), parameters are 
obtained that cannot be linked easily with the micro- 
structure of the ball-milled powder. If it is performed 
nevertheless, the results depend on the reflections 
incorporated in the analysis. With the use of straight- 
line fits to all eight reflections (see Fig. 9b) and the 
practical procedures described in ~4.2 to calculate OwA 
and ewA, the results a r e  D W A - - 1 7 n m  and ewA---- 
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Fig. 9. Behaviours of (a) the integral breadth/~ as a function of d* and 
(b) the logarithm of the Fourier coefficients A(L) as a function of d .2 
for the structurally broadened line profiles (hkl indicated at the 
bottom) of a ball-milled and fractionated tungsten powder. Dashed 
lines (straight-line fits to all eight data points) have been used in the 
Williamson-Hall analysis (a) and the Warren-Averbach analysis 
(b). Full lines have been calculated from the 1present strain-field 
model using (D) = 21 rim, w, = 0.115 and (e 2)/2 = 6.8 x 10 -3. 
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1.3 x 10 -3. The results using e.g. only 110 and 220 are 
DWA = 23nm and eWA = 2.2 X 10 -3. A (precarious) 
extrapolation of (~)1/2 to L = 0 yields --~ 3 x 10 -3 for 
all eight reflections and ---5 x 10 -3 for only 110 and 
220. Moreover, the AS(L) curves obtained always show 
a small 'hook effect'. 

6.2. Line-profile matching using the strain-field model 

Fourier coefficients calculated according to (7) and 
(8) have been fitted to the experimental Fourier 
coefficients of all eight reflections simultaneously (cf. 
§5). It was found that the parameter values 
( D ) = 2 1 n m ,  Wr=0.115 and (e2) l /2=6 .8x10-3  
yield the best fit (see the curved lines in Fig. 9b). 
These parameter values indicate that the strain along an 
arbitrary direction in the ball-milled powder shows 
significant peaks at average intervals of 21 nm, with a 
peak-width to peak-distance ratio of (on average) 0.115 
[Wr = w/(D); see above (7)]. With the recognition that 
the data points for L -  2 nm are probably the least 
accurate owing to the unavoidable truncation of the 
measured profiles, the curved lines and the data points 
agree fairly well. This is remarkable considering the 
simplicity of the strain-field model used at present. 

The behaviour of the integral breadth corresponding 
to the strain-field parameters estimated from the 
behaviour of the Fourier coefficients is indicated by 
the full line in Fig. 9(a). The discrepancy between the 
lines calculated using the model and the experimental 
data points in Figs. 9(a) and (b) is mainly ascribed to the 
periodic distribution of projected defects adopted in the 
model: it can be shown that non-periodic distributions 
yield Fourier coefficients that are comparable with the 
ones calculated here at small L, but that vanish more 
gradually at larger L (van Berkum et al., 1996). 
Consequently, such distributions yield smaller 15 values 
[cf. (9)], with a better correspondence to the present 
experimental data. 

From the parameter values obtained by fitting 
the Fourier coefficients, the results of the 
Williamson-Hall analysis and the Warren-Aver- 
bach analysis can be predicted: for Wr-0 .115,  
Fig. 5(a) yields DWH ~ - - 1 . 6 ( D ) =  33nm and ewH "~ 
0.33(e2) 1/2 = 2.2 x 10 -3, and Fig. 5(b) yields DWA "" 
0.85(D) = 18nm and ewA "" 0 .24(e2)  1/2 - -  1.6 x 10 -3, 
in fair agreement with the results obtained in §6.2. The 
somewhat larger discrepancy for Own can be explained 
by the periodic projected-defect-distance distribution 
adopted (see above and cf. Fig. 9a). 

The strain values obtained by means of line-profile 
decomposition (2.5 x 10 -3 for eWH; 3-5 x 10 -3 for 
(~) 1/2 for L $ 0) are significantly smaller than the root- 
mean-squared strain value obtained by means of line- 
profile simulation (6.8 x 10-3). In the past, it has been 
observed that stored energies calculated from Warren- 
Averbach strains (stored energy is proportional to (e2)) 

are smaller than those calculated from calorimetric 
measurements (Michell & Haig, 1957). The present 
results suggest that such discrepancies can be due to 
underestimation of the mean-squared strain by the 
Warren-Averbach analysis and that line-profile simula- 
tion and matching using the present model provides 
more accurate root-mean squared strain and stored- 
energy values. 

7. Conclusions 

The diffraction-line broadening due to lattice distortions 
associated with crystal defects can be described by 
means of a generally applicable model for the strain 
field in a column parallel to the diffraction vector. The 
strain-field model consists of a superposition of 
component strain fields, each of which is associated 
with a crystal defect close to the column, with 
statistically determined amplitudes and distances 
between the projections of the defects onto the column. 
In the present model, these amplitudes and distances are 
taken to be statistically independent. The average 
projected-defect distance (D), the width of the compo- 
nent strain fields relative to (D) and the mean-squared 
strain resulting from the superimposed component 
strain fields are the most important parameters in the 
model. 

In the strain-field model, the average projected-defect 
distance (D) can be used as a scaling parameter The line 
width is proportional to (D) -t and depends on the 
product of the root-mean-squared strain and the length 
of the diffraction vector (or the order of reflection). The 
width of the component strain fields relative to (D) 
strongly influences the (type of) order dependence of 
the line broadening and thereby the results of multiple- 
order line-profile decomposition methods, like the 
Williamson-Hall and the Warren-Averbach analyses. 

For a smooth total strain field, i.e. for wide (relative 
to (D)) component strain fields, the line broadening is 
strongly order dependent. This is interpreted by the 
Williamson-Hall and the Warren-Averbach analyses as 
pure strain broadening. For a strongly peaking strain 
field, i.e. for narrow (relative to (D)) component strain 
fields and for a sufficiently large mean-squared strain, 
the line broadening is almost order independent. This is 
interpreted by the Williamson-Hall and the Warren- 
Averbach analyses as pure size broadening, with a size 
parameter equal to the average projected-defect distance 
(D). In all other cases, the order dependence is complex 
and the line-profile decomposition methods yield 
unclear results. 

Matching line profiles calculated using a strain-field 
model to experimental line profiles provides a method 
of diffraction-line-broadening analysis that avoids a 
priori assumptions about the type of order dependence 
of the line broadening. Thereby, a more versatile 
approach to line-broadening analysis is possible. 
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APPENDIX A 
Fourier coefficients of a line profile for the strain- 

field model 

According to (2) and (3), the Fourier coefficients 
A(L, d*) and B(L, d*) depend on the probability density 
pzL(ZL), where Zr. is the elongation of a length L parallel 
to the column x. To find pzL(ZL) for specific functions 
po(D), po(a) and f ( x ) ,  two equivalent procedures are 
possible. In the first procedure, a set {xi} of projected- 
defect positions x i and a set {a~} of amplitudes a~ are 
generated from the functions pn(D) and pa(a), respec- 
tively, for a single infinitely long axis x. Then, Z L is 
considered as a function of x along x, and the 
corresponding pz~(ZL) is calculated from this Z~.(x). In 
the second procedure, which is used in the following in 
a slightly modified [see below (15)] way, Z z at a single 
arbitrary position x along x is considered for an infinite 
ensemble of axes, each with different sets of values {xi} 
and {ai}. According to (4), (5) and (6), this Z~.({xi}, {aid 
can be written as 

o o  

Zt.({xi}, {ai}) = ~ Z i, (13) 
i=- -oo  

where Z i = aiF L(x - xi) and 

x+L/2 

FL(X -- xi) = f f ( x '  -- xi)dx'  (14) 
x-L~2 

(the order of summation and integration has been 
reversed). From this ZL({xi}, {aid at the position x, 
which is independent of x as long as x is infinitely long, 
pzL(ZL) can be calculated. Since the set {xi} is 
statistically independent of the set {ai}, it is allowed to 
calculate a probability density function [pzL(ZL)]Ix, I of Z L 
for variable {ai} but fixed {xi} and to calculate the full 
probability density pz,(ZL) from [pz~(ZL)]lx,~ by varying 
{x~}. The latter procedure involves integration over all 
variables xi accounting for the probability of specific 
sets {xi} by a probability density function pl,,,l({xi}): 

pzL(ZL) = f . . .  f ptx, l({xi})[pzL(Zt.)]tx, jl-I dx i. (15) 
i 

For numerical calculations using (15), it is conve- 
nient to keep one of the defect positions fixed, say 
Xo = 0, and vary only the set {xi}\{x0}, i.e. all the 
variables xi except Xo. This can be done only at the cost 
of additionally introducing a certain variation of the 
(initially fixed and arbitrary) position x. Thus, in (15), 
the integration over x0 should be substituted by an 
integration over x. The range (x_ i /2 ,x~/2)  is a 
sufficient variation of x because, for a certain set 

{xi}\{Xo}, each position x beyond this range [say 
½(x~_ 1 + x~) < x < ½(x~ + x~+l), where c~ is a non- 
zero integer] is equivalent to (i.e. has surroundings 
identical to those of)  the position x - x ~  within the 
range (½x'_ l, ½~) for the set {~} \ {~}, identical to the set 
{xi}\{Xo} but translated along x over a distance x,,: 

= x  i+ ~ - x ~ .  Since all possible sets {xi}k{xo} are 
considered, it is superfluous to extend the variation of x 
beyond the range (x_l/2, Xl/2 ). The probability density 
pl~,i\l~ol({xi}\{Xo}) of the set {xi}\{Xo}, i.e. of the 
variables x i in case x 0 = 0, follows from the indepen- 
dence of the variables Di = x i -  xi_~ and their prob- 
ability densities: 

Plx, l\Ixol({xi} \ {Xo}) 

= I-I pn(xi - Xi-x) 
i 

. . . .  po ( - x_2  + x_l)pn(--x_l)pn(xl)Pn(X2 -- xl) . . . .  

(16) 

By substituting (16) into (15), excluding the integration 
over x 0 and integrating x over the indicated range, 
which has an average length equal to (D), one obtains 

O 0  CO 

pzL(Z~.) = (1/(D)) f dx lpn(x l )  f dx2pn(x 2 - x l ) . . .  
0 x I 

0 

x f dx_lpo(-x_l) 
- - 0 0  

X -  l 

x f dx_2po(-x_2 +x_l)... 
- - 0 0  

x~/2 

x f dx[pzt(ZLl]lx, i, (17) 
x-l~2 

where everything following a differential is the 
integrand of the corresponding integration. For the 
function [pzL(ZL)]tx~I, it is immaterial that now x and 
{xi}\{Xo} are fixed instead of {xi}. 

Since all variables a i are statistically independent, all 
terms Z i in (13) are also statistically independent. 
Therefore, the probability density [pzL(ZL)]Ixil of Z L for 
fixed x and {xi}k{xo} but variable {ai} can be written as 
the convolution (denoted as , )  of the probability density 
functions p~ of the terms Z i for all i: 

[PzL (ZL)]Ix, I . . . .  * PZ_2 (ZL) * PZ_l (ZL) * PZ~ (ZL) 

• pz,(Zt.) • pza(Zt.) • . . . .  (18) 

where, with the realization that Zi = Ft(x -xi)a~,  

Pz,(Zt) = (p,,{Z,./Ft(x - x i ) l ) /[Ft(x  - xi)]. (19) 

If the function f ( x )  decreases with increasing Ixl, 
F r . ( x -  xi) decreases with increasing I x -  xil [see (14)], 
i.e., for increasing Iil, if x is close to x 0 = 0. For 
decreasing F~.(x-  xi), Pz~ approaches a 8 function [see 
(19)] and 8 functions can simply be omitted in (18). 
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Therefore, only x~ and Z~ of defects with small Iil have 
to be considered in (17) and (18). 

After substitution of (17) into (2) and (3), the order of 
the integrations over x and {xi}\{x0} and the integration 
over Z L can be reversed so that the resulting cosine 
Fourier coefficients can be written as 

OO OO 

A(L,d*) = (1/(D)) f dXlpo(xl) f dx2Po(X 2 - x l ) . . .  
0 x l 

0 

X f d X _ l P D ( - - X _ l )  
- -  ( X )  

X -  1 

X f dx_2Po(-X_ 2 +X_l ) . . .  
- - i X )  

X l / 2  

x f dx[A(L,d*)ltx, i (20) 
x-l~2 

and the sine coefficients B(L,d*) can be related 
accordingly to [B(L,d*)]lx, l, where [A(L,d*)]Ix~j and 
[B(L, d*)]lx;I are Fourier coefficients for a specific x 
within (x_1/2, xl/2 ) and a specific {xi}\{Xo}. These can 
be expressed in terms of the moments (Z~)~x,~ of 
[pz,(ZL)]lxil by a series expansion of the cosine and 
sine, respectively: 

OO 

[A(L, d*)llx, I = f [Pz~ (ZL)ltx, I cos(2rtd*ZL) dZL 
- - 0 0  

1 (2zrd*)2/2! 2 
~ -  _ _  (Z~.){Xi } 

+ (2rrd,)4/4v 4 • ( z l _ . ) ~ x , i - . . .  (21) 

CX) 

[B(L, d*)]l,,, } = f [pzL (ZL)]Ix,~ sin(2rtd*ZL) dZ L 
- - O O  

_(2zrd.)3/3! 3 = (Z~)tx, l + . . . .  (22) 

A term proportional to (ZL)txi~ has been omitted in 
(22) because it is nil if ( a ) = 0  [see below (18)]. 
From (13) and the independence of a i and aj for 
i # j ,  so that (a~a~)= (a'F)(a]), the moments (Z~)lx, i 
can be expressed in terms of the moments (a n) of 
Pa(a). Some examples are: 

OO 
2 (Z~)/x,l, = (a 2) ~ l~L(x - xi) (23) 

i=--OO 
OO 

3 = (Z[.)lxi } (a 31 y~ F~(x -  xi) (24/ 
i=--oo 

o o  

4 (ZT.)lxi} = ( a  41 ~ F~L(x -- xi)  + 3 ( a 2 1 2  
i = - o o  

OO 

X E E F~L(X -- xi)F~L(X -- Xj). (25) 
i=-oo j# l 

By substitution of expressions like (23)-(25) into (21) 
and (22) and substitution of these into (20) and its 
analogue for B(L,d*) (only small Iil are important), 
A(L,d*) and B(L,d*) can be calculated without 

evaluating the multiple convolution for [pz,(Z~.)]~x,~ 
[cf. (181]• Next, specific functions Pa(a), pD(D) and 

f (x)  will be considered. 
(i) Probability density of strain amplitudes. If Pa(a ) is 

taken symmetrical with respect to a - - 0 ,  then 
2n+ l  __ 2 n + l  __ , (a ) -- O, (Z¢. )tx,~ - O, [B(L, d )]0,,I = 0 [see (22)] 

and consequently B(L, d*)=  0 so that the structurally 
broadened line profile is symmetrical. If pa(a ) is taken 
Gaussian, the expression for [A(L,d*)]lx J is also 
simplified significantly• In that case, [pzL(-~L)]tx,~ is a 
convolution of Gaussians [see (19)] and thus it is a 
Gaussian itself with a variance given by (23). Then, (21) 
reduces to (cf. Warren, 1959, p. 152) 

[A(L, d*)]lx,} exp(-2zr2d .2 2 = (Z:.)tx,~). (26) 

Note that, although a Gaussian Pa(a) implies a Gaussian 
[pzL(ZL)]Ix, I (i.e. the probability density of Z L for a 
specific x within (X_l/2, Xl/2 ) and a specific {xi} \ {Xo} ), 
pz,(ZL) or Pe(e), the probability density of the strain e, 
need not be Gaussian. The integrations over x and 
{xi}\{Xo} can make the shape of pzL(ZL) drastically 
different from that of [pzL(ZL)]Ix,~. The shape of the full 
pzL(ZL) depends on L and the functions f(x),  po(D) 
and, of course, Pa(a). 

(ii) Probability density of defect distances. The 
simplest expression for po(D) is a 8 function at 
D = (O): 

po(O) = 3(3 -- (O)), (27) 

which means that the defects are distributed perfectly 
regularly: x i = i(D) ('periodically' distributed defects). 
In that case, (20) reduces to 

(D)/2 

A(L,d*)=(1/(D))  f [A(L,d*)]~x,~dx (28) 
-(D)/2 

with x i = i(D) and the expression for B(L, d*) reduces 
accordingly• 

(iii) Shape of the component strain fields• The shape 
and width of the strain fields of the individual lattice 
defects is represented by the function f(x).  The 
following normalization off(x) is used here" 

OO 

f f2(x) dx = C, (29) 
- - O O  

where C is an arbitrary length constant [since f(x) is 
dimensionless]. With such a normalization, the 'strain 
content' feE(x)dx and consequently the stored elastic 
energy associated with a single defect in an infinitely 
long column is independent of the shape or width of 
f(x). Next, it will be shown that, for the present model, 
a similar statement holds for a distribution of defects. 

The mean-squared strain (e 2) for a distribution of 
defects in a column is calculated as follows. With (5) 
and (6) and the additivity of variances of independent 
variables, it follows for arbitrary pa(a) that 
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o o  

(e2)lx,} = (a 2) ~ f 2 ( x -  xi) , (30) 
i = - o ~  

where (e2)o,,~ is the variance of e at x resulting from 
varying all a i for fixed {xi}. To obtain (e2), {xi} is kept 
fixed to an arbitrary set of values and x is varied from 
- 0 ~  to cx~ [cf. the 'first' procedure below (14)]: 

A/2 
(e 2) = l i m  ( l / A )  f (e2)tx,} dx, (31) 

-A/2 

where A is the averaging range in x. After substitution 
of (30) into (31) and reversal of the order of integration 
and summation, the terms f 2 ( x -  xi) can be integrated 
separately. For A ~ oo, these integrations yield C [see 
(29)] for all defects. The number of such terms (-- the 
number of defects in A) approaches A / ( D )  if A --+ oo 
(law of large numbers). Thus, (e 2) is obtained as 

(6 "2) = C(a2)/ (D).  (32) 

Hence, in the present model, the mean-squared strain 
and consequently the stored energy in the columns with 
arbitrary defect distributions are independent of the 
shape or width of the component strain fields. This is a 
consequence of the independence of the amplitudes of 
the component strain fields of adjacent projected 
defects. 

If f ( x )  has a Lorentzian shape (see §2.2 for 
discussion), it reads 

f ( x )  = (2C/zrw)]/2[1 + (x/w)2] -1, (33) 

where w is the half-width at half-height o f f (x ) .  Then, 
the integration according to (14) can be performed 
analytically and (23) can be written as 

2 (Z~.)I~,} = (2w(D)(e2)/Tr)  
o o  

x ~ {arctan[(x - xi + L / 2 ) / w ]  
i = - - o o  

- arctan[(x - x i -- L / 2 ) / w ] }  2, (34) 

where C(a 2) is eliminated using (32). 

APPENDIX B 
Strain fields round dislocations 

Consider a straight screw dislocation in the z direction 
and through the origin of a rectangular coordinate 
system (x ,y ,z)  in an infinite elastically isotropic 
medium. The only non-vanishing displacement compo- 
nent is u z in the z direction (Hirth & Lothe, 1982): 

Uz(X, y, z) = (b/2rr) arctan(y/x) ,  (35) 

where b is the length of the Burgers vector. Consider an 
arbitrary line making an angle ~p with the z direction and 
having its closest distance "4 to the z axis at the position 
(Xo, Yo, Zo), where "4 = ( ~  + y2o)1/2. Introduce a second 
rectangular coordinate system (x', y', z') with its origin 

at (x, y, z) = (0, 0, z0), the z' direction parallel to the line 
and the x' axis through (x, y, z ) =  (x 0, Yo, Zo) (see Fig. 
10). Then, the position (x, y, z) = (x 0, Y0, Zo) becomes 
(x ' ,y ' ,z ' )  = (A ,0 ,0 ) .  The line is defined by 
(x ' ,y ' ,z ' )  = ( A , 0 , p ) ,  where p is a variable. The 
coordinates (x, y, z) are related to (x', y', z') by 

x = x' cos 0 - y' sin 0 cos ~0 - z' sin 0 sin ~0 

y = x' sin 0 + y' cos 0 cos ~0 + z' cos 0 sin ~o 

z = Zo - y' sin ~o + z' cos ~0, (36) 

where 0 =  arctan(xo/Yo).  In the z' direction, the 
displacement u z, equals u z cos tp. The strain in the z' 
direction err  is identical to Our/Oz'. Expressing u z 
according to (35) in terms of x', y'  and z' using (36), ere 
can now be calculated along the line (use x' = ,4 and 
y' = 0): 

err = (b/27r,4){cos~osin~o/[1 + (z / sintp/A)2]}. (37) 

Thus, the strain along any line passing a screw 
dislocation behaves as a Lorentzian, with an amplitude 
and a width depending on the distance and the 
orientation of the line with respect to the dislocation 
line. For edge dislocations, the same procedure leads to 
the conclusion that only the tails of the strain profile 
along a line parallel to the Burgers vector behave as 
Lorentzian. 

APPENDIX C 
Infinitely broad component strain fields 

If the strain fields of the individual defects are much 
broader than the average projected-defect distance 
(w>> (D)), the strain e(x) consists of very many 
statistically independent contributions ej(x) [see (5) 
and (6)]. Therefore, the probability density [pe(e)]0,~} 
of e for arbitrary x and fixed {xi} (see 'second 
procedure'  at the beginning of Appendix A) is Gaussian 

z 
z '  

Z 

/ 7 -  0 
x 

~ y  

Fig. 10. The relation between two rectangular coordinate systems 
(x, y, z) and (x', y', z e) and an arbitrary line (thick line) with its 
closest distance to the z axis at (x, y, z) = (Xo, Y0, Zo). 
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(central limit theorem), independent of the shape of 
pa(a). The variance (e 2){,,,} is independent of {xi} owing 
to the large number of defects contributing to e(x) if 
w >> (D). Therefore, (e2)lxi} ~_ (e2), independent of 
po(D). Further, e(x) is approximately constant over 
distances much smaller than w (cf. Fig. 2), so that 
Zt.(x ) ~_ Le(x) [see (4)] for L << w. In that case, 
[pz,(Zt.)]tx,} has the same shape as [pe(e)]lx}, which is 
Gaussian, and (26) is applicable, even i f - P a ( a )  is not 
Gaussian. The variance (Z2)Ix;I _~ L2(e2).{xil ~_ LZ(e 2) is 
also independent of {xi}. Thus, m the limit 
w/ (D) --+ o0, (26) reduces to 

A(L, d*) -- exp(-2n'Zd*2L2(e2)) for L << w. (38) 

If w/(D) = cx~ and (D) is non-zero, w = o~, so that the 
condition L << w can be neglected. Then, the Fourier 
transform and, consequently, the corresponding line 
profile are Gaussian and the integral breadth can be 
calculated from (38) using (9): 

/3 = (27r)l/2d. (e 2) 1/2 (39) 

The above expressions hold for any shape f ( x )  of the 
strain fields of the individual defects. 

If w/(D) is large but finite, (38) holds approximately. 
If d*(e2) 1/2 > 1/w, A(L, d*) decreases virtually to zero 
for L << w and the restriction L << w can again be 
neglected. For smaller d*(e2) m,  (38) is not an 
acceptable approximation for large L and 13 deviates 
from (39) (cf. Fig. 3 for w/(D) = 1). 

APPENDIX D 
Infinitely narrow component strain fieids~" 

In the limit w/(D) 4, 0, the strain field of an individual 
projected defect is a 8 function. Therefore, it is enclosed 
by the correlation length L completely or not at all. If L 
encloses projected defect i, then L is elongated by an 
amount (D)/] i, where /]i =Fai / (D)  with F = f f ( x ) d x  
[using (33) for f (x) ,  F = (nwC)l/2]. In general, if m 
projected defects, numbered 1 to m, are enclosed in the 
interval Ix - L/2, x + L/2], then ZL(x ) can be written as 

Zt.(x) = (D) ~ /]i. (40) 
i = 1  

The probability density of Z/. given that L encloses m 
defects is denoted as [pz,(Zt.)],,,. If Pa(a) is Gaussian 

2 with a variance Ca ), [pzL(Zt.)],,, is also Gaussian (all a i 
are statistically independent) and it has a variance 
m(O)E(r/2), where (/]2) __ F2(aE)/(O)2 [= n.w(eE)/(D) if 
(33) is used for f(x)]. For fixed {xi}, the interval 
[ x - L / 2 , x  + L / 2 ]  encloses different numbers m of 

I For very narrow distortion fields, i.e. w of the order of the lattice 
spacing d, the use of a continuum model becomes questionable. 
However, it was shown that Fourier coefficients calculated from 
discrete lattice planes displaced according to the present strain-field 
model and from the continuum model itself are identical for L values 
equal to a multiple of d. 

defects for different positions x. If the probability that 
L encloses m defects is denoted as p,,,(m), then pzL(Zz.) 
can be written as 

o0 

PzL (ZL) -- ~-, P,,,(m)[PzL (ZL)]m" (41) 
m = 0  

Substituting (41) in (2) and solving the integral for each 
m separately yields 

oo 

A(L, d*) = ~_, pro(m)exp(-2rc2d*2m(D)2(/]2)) 
m = 0  

oQ 

= ~ p,,,(m)E", (42) 
m----O 

where E = exp(-2zr:d .2 (D) 2 (02)). 
In the case of a ~ function for po(D), i.e. projected 

defects are always separated by a distance (D), then a 
correlation length L < (D) encloses no projected defects 
with a probability pro(0) = ((D) - L)/(D) = 1 - L,. or 
one defect with a probability p r o ( l ) = L / ( D ) = L r ;  
p,,,(m) = 0 for m > 1. Generally, an arbitrary length 
L encloses M defects with a probability 
p,,,(M) = M + 1 -  L r or M + 1 defects with a prob- 
ability p,,,(M + 1) = L r - M where M is the integer part 
of Lr; all other p,,,(m) are nil. Calculating A(L, d*) using 
(42) and these p,,,(m) values yields 

A(L, d*) = (M + 1 - Lr)E M + (L, - M)E M+l. (43) 

Note that A(L, d*) has a negative slope in L = 0 equal to 
- ( 1  - E)/(D),  which is usually interpreted as indicating 
a 'domain size' equal to ( D ) / ( 1 - E )  (e.g. Warren, 
1969). This, for strain broadening, unrealistic feature 
occurs only for hypothetical infinitely narrow compo- 
nent strain fields; for all component strain fields with a 
finite width, A(L, d*) is horizontal and curved down- 
wards for L = 0 (see Fig. 4 and its discussion in §3.3). 

The relative integral breadth/3(d*) of a line profile 
can be calculated from (43) using (9) by collecting the 
terms containing equal powers of E, yielding 

fir(d*) = {1/[2(1 + E + E 2 + . . . )  - 1]} 
(44) 

= (1 - E)/(1 + E). 

For very s m a l l  d*(D)(/]2) 1/2 (i.e. E t 1), 
/3r(d*) "-" yrEd*E(D)2(/] 2) (see, for E, below (42)]. The 
proportionality /3 cx d .2 has been derived theoretically 
and observed experimentally for the class of 'para- 
crystalline' materials (Kulshreshtha, Dweltz & 
Radhakrishnan, 1971). The ideal paracrystal can indeed 
be considered as a special case of the model presented in 
this paper: infinitely narrow component strain fields 
(w/(D) 4, 0) with the average defect distance (D) equal 
to the average lattice spacing d. Since the root-mean- 
squared spacing deviation d(/] 2) 1/2 in such a structure is 
much smaller than the spacing d itself and d *-~ is 
usually a small multiple of d, the quantity d* (D) (/]2)1/2 
is small (as required for the discussed quadratic 
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behaviour of fi). The behaviour of f i r ( d * )  for large 
d * ( D ) ( r l 2 )  1/2 (i.e. E $ 0) is discussed in §3.2. 

APPENDIX E 
Strain distributions 

The results of the Warren-Averbach analysis, as 
discussed in ~4.2, can also largely be understood 
from an investigation of the frequency distributions 
PL(eL) of eL(X ), the average of e(x) in the interval 
[x - L /2 ,  x + L/2]. The function eL(X ) Can be consid- 
ered as e(x) smoothed by a rectangular window of width 
L. Thus, the variance (e2L) decreases continuously]" with 
increasing 'smoothing', i.e. increasing L. Because in 
the shape function of the strain fields of the individual 
projected defects x and w occur only in the combination 
x / w  [see (33)] and the contributions of the individual 
defects to eL are uncorrelated, the behaviours of (4)  
versus L for different w coincide if they are displayed as 
a function of L/w .  In relative quantities, this statement 
holds for (e2L,) versus Lr /w  r (see Fig. l la) .  Thus, (e2L,) 
versus L r decreases faster for small w r than for large wr. 
This can be understood from the sharply peaked 
behaviour of e(Xr) for small w,, which is flattened by 
the smoothing much faster than the smooth e(Xr) for 
large w r. 

The shape of PL,(eL,) Can be characterized by the 
kurtosis kt.,, here defined as (e4,)/(~,) 2 (see Fig 11b). 
For Lr >> 1, the strain er.,(x) consists of many 
contributions of different defects of comparable magni- 
tude. The contributions are statistically independent 
because the values ai are drawn independently. Then, 
according to the central limit theorem (the distribution 
of the sum of many independent variables becomes 
Gaussian), the shape of pl (e L ) has to become Gaussian 
for large L,. For a Ga"usslran distribution, kL, = 3. 
Indeed, kL, decreases with increasing Lr to approxi- 
mately 3 for L r > 1 (see Fig. l lb). Further, kL, 
increases with decreasing w,, in particular for small 
L r, because the maximum values of e~.,(x)/(~ )1/2 
become increasingly extreme with decreasing w,'(cf. 
Fig. 2), implying an increase of (e4) with constant 
(~)2 .  The oscillations in Fig. 1 l(b) (kL, = 3 for integer 
values of L r and slightly larger in between) originate 
from the adopted periodicity for the distribution of the 
projected-defect distances. For non-periodic distribu- 
tions, kL, decreases more smoothly to 3. 

If, for a specific L, the distributionpL(eL) is Gaussian, 
the assumption used in the Warren-Averbach analysis 
(see N.2) is correct for this L value (warren, 1959) and 
the line in the Warren-Averbach plot is straight. For 
large w r, pL(e~.) is always almost Gaussian and straight 
lines should be obtained, which agrees with Fig. 6(a). If 
p~.(e~.) is non-Gaussian, the assumption in the Warren- 

~" This does not necessarily hold if the grains are small and enclose 
misfitting second-phase particles (cf. van Berkum et  a l . ,  1992). 

Averbach analysis can still be justified if L and (e 2) are 
sufficiently small (Warren, 1959). Apparently, for 
w r = 0 . 1  and w r = 0 . 0 1 ,  the values of L and (e 2) 
pertaining to Figs. 6(b) and (c) are not small enough in 
this sense, which results in curved lines. 

Since the behaviour of (4)  has been discussed 
extensively in the past, the (e2z) calculated here are 
confronted with some expressions in the literature. The 
horizontal tangent to (~)  in L = 0 and the parabolic 
decay for small L, derived from infinitely large grains 
by Turunen, de Keijser, Delhez & van der Pers (1983), 
are both present in Fig l l(a) .  For 2.5 < L / w  < 15, the 
(4)  values in Fig. l l(a) (note that L / w  = Lr/wr) are 
approximately proportional to ln(C/L) ,  the behaviour 
derived for strains around dislocations for small but not 
too small L (Wilkens, 1970). For larger L, the 
behaviour of (4)  depends strongly on the details of 
the spatial ordering of the defects. Since only one 
projected-defect-distance distribution is considered 
here (the periodic one), the present (e2L) behaviour for 
larger L is unique. Finally, for very large L, (4)  is 
proportional to L -l [the (e2z) according to equation (4.7) 
and the equation below equation (A.8) of Wilkens 
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0 i i i 
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Lr / w r 
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o ~ I 
o 1 

L, 
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50 

Fig. 11. Characteristics of the frequency distributions PLr(et , )  of eL,: 
(a) relative variance (~,) / (e  2) ver sus  L , / w  r and (b) kurtosis 
kL, = (e~.,)/(~)2 ver sus  L r for different values of the relative width 
w r of the component strain fields [if Pt.,(eL,) is Gaussian, then 
k~ ; 31. 
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(1970) also show this behaviour]. This relation always 
holds for very large L because then the local strain eL(x ) 
consists of many statistically independent contributions; 
a direct consequence is that In[A(L, d*)] o¢ - L  for very 
large L (Eastabrook & Wilson, 1952). 
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